//Balanced Tree better than linear index
Cost for searches in Linear Index ~ O(n). (O(log(n)) with binary search)
Updates for Linear index very expensive. Need to shift array elements.
Cost of searches in Balanced Trees (e.g. balanced BST) ~ O(log(n))
Updates to trees can be O(1) – O(log(n))

//Tree Indexing
Linear index is poor for insertion/deletion.
Tree index can efficiently support all desired operations:
Insert/delete
Multiple search keys (multiple indices)
Key range search

Difficulties when storing tree index on disk:
Tree must be balanced for efficient searches.
Each path from root to leaf should cover few disk pages.
BST can be used but with difficulty to maintain balance, affecting too many blocks:

//2-3 Tree
A 2-3 Tree has the following properties:
A node contains one or two keys
Every internal node has either two children (if it contains one key) or three children (if it contains two keys).
All leaves are at the same level in the tree, so the tree is always height balanced.
The 2-3 Tree has a search tree property analogous to the BST.

The advantage of the 2-3 Tree over the BST is that it can be updated at low cost.

2-3 Tree Insertion:
Find the leaf node that would contain the key (if it were in the tree)
If that node (L) contains 1 value
The new key can just be added without any modifications
Else More space must be created:
Split this node (L) into two nodes
 Now we have 3 keys: The new key and the two keys of L
Left most node receives smallest key
New node receives largest key
Middle key is passed up to the parent with a pointer to new node
 If parent has only one key promoted key gets added to parent
Else split and promote process gets repeated – going upward
Tree height may increase, but tree is always balanced.

[image:]

[image:]

[image:]
[image:]
[image:]
[image:]

2-3 Tree Deletion
Three cases:
Delete from a leaf containing 2 records: simply remove the key
Delete from a leaf containing one record
Delete from an internal node.
In the last two cases: Borrow a key from another node. Siblings may be merged, and the tree height may be reduced

//B-Trees:
A B-Tree of order m has these properties:
The root is either a leaf or has at least two children.
Each node, except for the root and the leaves, has between m/2 and m children.
All leaves are at the same level in the tree, so the tree is always height balanced.
A B-Tree node is usually selected to match the size of a disk block.
A B-Tree node could have hundreds of children.

Properties:
B-Trees are always balanced.
B-Trees keep similar-valued records together on a disk page, which takes advantage of locality of reference.
B-Trees guarantee that every node in the tree will be full at least to a certain minimum percentage. This improves space efficiency while reducing the typical number of disk fetches necessary during a search or update operation.

Search in a B-Tree is a generalization of search in a 2-3 Tree.
Do binary search on keys in current node. If search key is found, then return record. If current node is a leaf node and key is not found, then report an unsuccessful search.
Otherwise, follow the proper branch and repeat the process.
[image:]

B+ Trees

The most commonly implemented form of the B-Tree is the B+-Tree.
Internal nodes of the B+-Tree do not store record -- only values to guide the search.
Leaf nodes store records or pointers to records.
A leaf node may store more or less records than an internal node stores values. It must remain at least half full

[image:]

Insertion:

[image:]

[image:]

Deletion
[image:]

[image:]

Analysis:

B+-Trees nodes are always at least half full.
The B*-Tree splits two pages for three, and combines three pages into two. In this way, nodes are always 2/3 full.
Asymptotic cost of search, insertion, and deletion of nodes from B-Trees is (log n).
Base of the log is the (average) branching factor of the tree.

Example: Consider a B+-Tree of order 100 with leaf nodes containing 100 records.
1 level B+-tree: up to 100 keys
2 level B+-tree: 10,000
3 level B+-tree: 1,000,000
4 level B+-tree: 100,000,000 (Note for 100 Byte records, this is 1 TeraByte!)
Ways to reduce the number of disk fetches:
Keep the upper levels in memory.
Manage B+-Tree pages with a buffer pool.

image7.png
B

image8.png
B

Example of B+ tree of order 4 with leafs of § record-size.

image9.png
Initial B+ tree
Justa leaf

image10.png

image11.png

image12.png

image1.png

image2.png
Insert55
I T

nmn-

image3.png
E=]
=R cm|
ER EO O EE FE

image4.png
Insert19in above tree

4
EO EOED

Split the node 2021 4hd promote 20:

image5.png
2

ten R

Parent (23/30) i Tull = splitand promote 23

image6.png
Parent (18133)is full => splitand promote 23: No Parent => Creste one.

